Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
نویسندگان
چکیده
Biodegradable poly(DL-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) microparticles with tunable size, shape, internal structure and surface morphology were produced by counter-current flow focusing in axisymmetric (3D) glass capillary devices. The dispersed phase was composed of 0.5-2 wt % polymer solution in a volatile organic solvent (ethyl acetate or dichloromethane) and the continuous phase was 5 wt % aqueous poly(vinyl alcohol) solution. The droplets with a coefficient of variation in dripping regime below 2.5% were evaporated to form polymeric particles with uniform sizes ranging between 4 and 30 μm. The particle microstructure and surface roughness were modified by adding nanofiller (montmorillonite nanoclay) or porogen (2-methylpentane) in the dispersed phase to form less porous polymer matrix or porous particles with golf-ball-like dimpled surface, respectively. The presence of 2-4 wt % nanoclay in the host polymer significantly reduced the release rate of paracetamol and prevented the early burst release, as a result of reduced polymer porosity and tortuous path for the diffusing drug molecules. Numerical modeling results using the volume of fluid-continuum surface force model agreed well with experimental behavior and revealed trapping of nanoclay particles in the dispersed phase upstream of the orifice at low dispersed phase flow rates and for 4 wt % nanoclay content, due to vortex formation. Janus PLA/PCL (polycaprolactone) particles were produced by solvent evaporation-induced phase separation within organic phase droplets containing 3% (v/v) PLA/PCL (30/70 or 70/30) mixture in dichloromethane. A strong preferential adsorption of Rhodamine 6G dye onto PLA was utilized to identify PLA portions of the Janus particles by confocal laser scanning microscopy (CLSM). Uniform hemispherical PCL particles were produced by dissolution of PLA domes with acetone.
منابع مشابه
Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery.
Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several therapies approved by the US Food and Drug Administration. Conventional emulsion-based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug-loaded microparticles from...
متن کاملNovel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
In this paper, we introduce a novel cylindrical channel that generates coaxial flow without using glass microcapillary or complicated silicon processing, and we demonstrate the fabrication of microparticles and microfibers using this channel. The simple fabrication process for cylindrical channels employs the deflection of free-standing thin PDMS membranes. Using this channel, alginate micropar...
متن کاملMicrofluidic Synthesis of Multi-layer Nanoparticles for Drug & Gene Delivery
Multiple layer nanoparticles offers a likelihood of success in drug delivery, as it provides a solution for a more controllable drug release, as with such structures, control over the capsule wall thickness, permeability, stability, and degradation characteristics can be achieved (Kumar, 2008). Using PDMS microfluidic devices to synthesize polymeric multilayer microparticles has become popular ...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملGlass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
HYPOTHESIS Droplet size in microfluidic devices is affected by wettability of the microfluidic channels. Three-dimensional countercurrent flow focusing using assemblies of chemically inert glass capillaries is expected to minimize wetting of the channel walls by the organic solvent. EXPERIMENTS Monodispersed polycaprolactone and poly(lactic acid) particles with a diameter of 18-150 μm were pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 7 41 شماره
صفحات -
تاریخ انتشار 2015